Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 14168, 2022 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-35986051

RESUMEN

This study develops a general method to evaluate the contributions of localized urbanization and global climate change to long-term urban land surface temperature (ULST) change. The method is based on the understanding that long-term annual ULST is controlled by three factors: (1) localized urbanization, (2) global climate change, and (3) interannual climate variation. Then the method removes the interannual climate fluctuations on long-term observed LST time series via linear regression and separates the contributions of urbanization and climate change to the impacts on long-term ULST via urban-rural comparison. The method is applied to Lagos, a fast-growing metropolis in the tropical West Africa, as an example for reference. Combined time-series daily daytime and nighttime MODIS Land Surface Temperature (LST) data over the years of 2003-2021 are used as the representation of land surface temperature. To avoid the potentioal interannual data biase due to uneven availability of data in the rainy seasons over years, only MODIS LST data from dry seasons are used in the study. The results are summarized as follows for Lagos: (1) long-term annual ULST is confirmed to be controlled by the three factors; (2) the proposed method can separate the contribution of the three factors to the ULST; (2) both localized urbanization and global warming are verified to contribute to the ULST increase with positive trends; (3) daytime ULST increased the most in the afternoon time at a mean rate of 1.429 °C per decade, with 0.985 °C (10 year)-1 contributed by urbanization and 0.444 °C (10 year)-1 contributed by climate warming; (4) nighttime ULST in Lagos increased the most after midnight at a rate of 0.563 °C (10 year)-1, with 0.56 °C (10 year)-1 contributed by urbanization and 0.003 °C (10 year)-1 contributed by climate warming; and (5) urbanization is generally responsible for around 60.97% of the urban warming in Lagos. Therefore, the increasing urbaniztion-induced urban heat island effect is the major cause for more heat-related health risks and climate extremes that many urban residents are suffering. The results of this study are of useful reference for both urbanization and climate change related issues in the geo-science field.


Asunto(s)
Cambio Climático , Urbanización , Ciudades , Monitoreo del Ambiente/métodos , Calor , Nigeria , Temperatura
2.
Sci Data ; 9(1): 477, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35927555

RESUMEN

This paper describes a set of Near-Real-Time (NRT) Vegetation Index (VI) data products for the Conterminous United States (CONUS) based on Moderate Resolution Imaging Spectroradiometer (MODIS) data from Land, Atmosphere Near-real-time Capability for EOS (LANCE), an openly accessible NASA NRT Earth observation data repository. The data set offers a variety of commonly used VIs, including Normalized Difference Vegetation Index (NDVI), Vegetation Condition Index (VCI), Mean-referenced Vegetation Condition Index (MVCI), Ratio to Median Vegetation Condition Index (RMVCI), and Ratio to previous-year Vegetation Condition Index (RVCI). LANCE enables the NRT monitoring of U.S. cropland vegetation conditions within 24 hours of observation. With more than 20 years of observations, this continuous data set enables geospatial time series analysis and change detection in many research fields such as agricultural monitoring, natural resource conservation, environmental modeling, and Earth system science. The complete set of VI data products described in the paper is openly distributed via Web Map Service (WMS) and Web Coverage Service (WCS) as well as the VegScape web application ( https://nassgeodata.gmu.edu/VegScape/ ).

3.
Sci Data ; 9(1): 63, 2022 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-35236869

RESUMEN

Space-based crop identification and acreage estimation have played a significant role in agricultural studies in recent years, due to the development of Remote Sensing technology. The Cropland Data Layer (CDL), which was developed by the U.S. Department of Agriculture (USDA), has been widely used in agricultural studies and achieved massive success in recent years. Although the CDL's accuracy assessments report high overall accuracy on various crops classifications, misclassification is still common and easy to discern from visual inspection. This study is aimed to identify and resolve inaccurate crop classification in CDL. A decision tree method was employed to find questionable pixels and refine them with spatial and temporal crop information. The refined data was then evaluated with high-resolution satellite images and official acreage estimates from USDA. Two validation experiments were also developed to examine the data at both the pixel and county level. Data generated from this research was published online in two repositories, while both applications allow users to download the entire dataset at no cost.

4.
Health Place ; 66: 102450, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33010661

RESUMEN

Complexities of virus genotypes and the stochastic contacts in human society create a big challenge for estimating the potential risks of exposure to a widely spreading virus such as COVID-19. To increase public awareness of exposure risks in daily activities, we propose a birthday-paradox-based probability model to implement in a web-based system, named COSRE (community social risk estimator) and make in-time community exposure risk estimation during the ongoing COVID-19 pandemic. We define exposure risk to mean the probability of people meeting potential cases in public places such as grocery stores, gyms, libraries, restaurants, coffee shops, offices, etc. Our model has three inputs: the real-time number of active and asymptomatic cases, the population in local communities, and the customer counts in the room. With COSRE, possible impacts of the pandemic can be explored through spatiotemporal analysis, e.g., a variable number of people may be projected into public places through time to assess changes of risk as the pandemic unfolds. The system has potential to advance understanding of the true exposure risks in various communities. It introduces an objective element to plan, prepare and respond during a pandemic. Spatial analysis tools are used to draw county-level exposure risks of the United States from April 1 to July 15, 2020. The correlation experiment with the new cases in the next two weeks shows that the risk estimation model offers promise in assisting people to be more precise about their personal safety and control of daily routine and social interaction. It can inform business and municipal COVID-19 policy to accelerate recovery.


Asunto(s)
COVID-19/epidemiología , Medición de Riesgo/métodos , Algoritmos , Humanos , Internet , Mapas como Asunto , Pandemias , Probabilidad , Instalaciones Públicas , Análisis Espacial , Estados Unidos/epidemiología
5.
Sci Total Environ ; 733: 138869, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32450376

RESUMEN

Training samples is fundamental for crop mapping from remotely sensed images, but difficult to acquire in many regions through ground survey, causing significant challenge for crop mapping in these regions. In this paper, a transfer learning (TL) workflow is proposed to use the classification model trained in contiguous U.S.A. (CONUS) to identify crop types in other regions. The workflow is based on fact that same crop growing in different regions of world has similar temporal growth pattern. This study selected high confidence pixels across CONUS in the Cropland Data Layer (CDL) and corresponding 30-m 15-day composited NDVI time series generated from harmonized Landat-8 and Sentinel-2 (HLS) data as training samples, trained the Random Forest (RF) classification models and then applied the models to identify crop types in three test regions, namely Hengshui in China (HS), Alberta in Canada (AB), and Nebraska in USA (NE). NDVI time series with different length were used to identify crops, the effect of time-series length on classification accuracies were then evaluated. Furthermore, local training samples in the three test regions were collected and used to identify crops (LO) for comparison. Results showed that overall classification accuracies in HS, AB and NE were 97.79%, 86.45% and 94.86%, respectively, when using TL with NDVI time series of the entire growing season for classification. However, LO could achieve higher classification accuracies earlier than TL. Because the training samples were collected across USA containing multiple growth conditions, it increased the potential that the crop growth environment in test regions could be similar to those of the training samples; but also led to situation that different crops had similar NDVI time series, which caused lower TL classification accuracy in HS at early-season. Generally, this study provides new options for crop classification in regions of training samples shortage.

6.
Sensors (Basel) ; 19(20)2019 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-31600963

RESUMEN

Yield prediction is of great significance for yield mapping, crop market planning, crop insurance, and harvest management. Remote sensing is becoming increasingly important in crop yield prediction. Based on remote sensing data, great progress has been made in this field by using machine learning, especially the Deep Learning (DL) method, including Convolutional Neural Network (CNN) or Long Short-Term Memory (LSTM). Recent experiments in this area suggested that CNN can explore more spatial features and LSTM has the ability to reveal phenological characteristics, which both play an important role in crop yield prediction. However, very few experiments combining these two models for crop yield prediction have been reported. In this paper, we propose a deep CNN-LSTM model for both end-of-season and in-season soybean yield prediction in CONUS at the county-level. The model was trained by crop growth variables and environment variables, which include weather data, MODIS Land Surface Temperature (LST) data, and MODIS Surface Reflectance (SR) data; historical soybean yield data were employed as labels. Based on the Google Earth Engine (GEE), all these training data were combined and transformed into histogram-based tensors for deep learning. The results of the experiment indicate that the prediction performance of the proposed CNN-LSTM model can outperform the pure CNN or LSTM model in both end-of-season and in-season. The proposed method shows great potential in improving the accuracy of yield prediction for other crops like corn, wheat, and potatoes at fine scales in the future.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...